### Boolean Function Optimization

- ✓ Minimizing the gate input (or literal) cost of a (a set of) Boolean equation(s) reduces circuit cost.
- ✓ We choose gate input cost.
- ✓ Boolean Algebra and graphical techniques are tools to minimize cost criteria values.
- ✓ Some important questions:
  - When do we stop trying to reduce the cost?
  - Do we know when we have a minimum cost?
- ✓ Treat optimum or near-optimum cost functions for two-level (SOP and POS) circuits first.
- ✓ Introduce a graphical technique using Karnaugh maps (K-maps, for short)

# Karnaugh Maps (K-map)

- ✓ A K-map is a collection of squares
  - Each square represents a minterm
  - The collection of squares is a graphical representation of a Boolean function
  - Adjacent squares differ in the value of one variable
  - Alternative algebraic expressions for the same function are derived by recognizing patterns of squares (corresponding to cubes)
- ✓ The K-map can be viewed as
  - A reorganized version of the truth table or a particular cube representation

#### Some Uses of K-Maps

- ✓ Provide a means for:
  - Finding optimum
    - SOP and POS standard forms, and
    - two-level AND/OR and OR/AND circuit implementations

for functions with small numbers of variables

- Visualizing concepts related to manipulating Boolean expressions
- Demonstrating concepts used by computer-aided design programs to simplify large circuits

# The Boolean Space B<sup>n</sup>

```
\checkmark B = { 0,1}
\checkmark B<sup>2</sup> = {0,1} × {0,1} = {00, 01, 10, 11}
      Karnaugh Maps: Boolean Cubes:
 Bo
 B<sup>1</sup>
 B<sup>2</sup>
 B<sup>3</sup>
 B<sup>4</sup>
```

# Two Variable Maps

#### ✓ A 2-variable Karnaugh Map:

- Note that minterm  $m_0$  and minterm  $m_1$  are "adjacent" and differ in the value of the variable y
- Similarly, minterm  $m_0$  and minterm  $m_2$  differ in the x variable.

| x     | y = 0                                   | y = 1                     |
|-------|-----------------------------------------|---------------------------|
| x = 0 | $m_0$ $\overline{x}\overline{y}$        | m₁<br>≅y                  |
| × = 1 | <b>m</b> <sub>2</sub><br>× <del>y</del> | <b>m</b> <sub>3</sub> × y |

- Also,  $m_1$  and  $m_3$  differ in the x variable as well.
- Finally,  $m_2$  and  $m_3$  differ in the value of the variable y

## K-Map and Truth Tables

- ✓ The K-Map is just a different form of the truth table.
- ✓ Example Two variable function:
  - We choose a,b,c and d from the set  $\{0,1\}$  to implement a particular function, F(x,y).

#### Function Table

| Input<br>Values<br>(x,y) | Function<br>Value<br>F(x,y) |
|--------------------------|-----------------------------|
| 0 0                      | а                           |
| 0 1                      | b                           |
| 10                       | С                           |
| 11                       | d                           |

#### K-Map

| x     | y = 0 | y = 1 |
|-------|-------|-------|
| x = 0 | a     | Ь     |
| x = 1 | С     | d     |

# K-Map Function Representation

✓ Example: F(x,y) = x

| F = x | y = 0 | y = 1 |
|-------|-------|-------|
| x = 0 | 0     | 0     |
| x = 1 | 1     | 1     |

✓ For function F(x,y), the two adjacent cells containing 1's can be combined using the Minimization Theorem:

$$F(x,y) = x\overline{y} + xy = x$$

### K-Map Function Representation

✓ Example:  $G(x,y) = \overline{x}y + x\overline{y} + xy$ 

| G=x+y | y = 0 | y = 1 |
|-------|-------|-------|
| x = 0 | 0     | 1     |
| × = 1 | 1     | 1     |

 $\checkmark$  For G(x,y), two pairs of adjacent cells containing 1's can be combined using the Minimization Theorem:

$$G(x,y) = (x\overline{y} + xy) + (\overline{x}y + xy) = x + y$$
Duplicate xy

✓ A three-variable K-map:

| yz<br>X | yz=00          | yz=01                 | yz=11          | yz=10          |  |
|---------|----------------|-----------------------|----------------|----------------|--|
| x=0     | $m_0$          | $m_1$                 | m <sub>3</sub> | m <sub>2</sub> |  |
| x=1     | m <sub>4</sub> | <b>m</b> <sub>5</sub> | $m_7$          | $m_6$          |  |

✓ Where each minterm corresponds to the product terms:

| yz<br>X | yz=00                                  | yz=01 | yz=11           | yz=10            |
|---------|----------------------------------------|-------|-----------------|------------------|
| x=0     | <del>x</del> <del>y</del> <del>z</del> | χyz   | <del>x</del> yz | χȳz              |
| x=1     | ×ÿ̄z̄                                  | ×ȳz   | x y z           | x y <del>z</del> |

Note that if the binary value for an index differs in one bit position, the minterms are adjacent on the K-Map

# Alternative Map Labeling

- ✓ Map use largely involves:
  - Entering values into the map, and
  - Reading off product terms from the map.
- ✓ Alternate labelings are useful:



# Example: Combining Squares

- √ Example: Let
- $\checkmark$  F (x, y, z) =  $\sum_{m}$  (2, 3, 6, 7)



✓ Applying the Minimization Theorem three times:

$$F(x,y,z) = \overline{x}yz + xyz + \overline{x}y\overline{z} + xy\overline{z}$$

$$= yz + y\overline{z}$$

$$= y$$

✓ Thus the four terms that form a 2 × 2 square correspond to the term "y".

### Combining Squares

- ✓ By combining squares, we reduce number of literals in a product term, reducing the literal cost, thereby reducing the other two cost criteria
- ✓ On a 3-variable K-Map:
  - One square represents a minterm with three variables
  - Two adjacent squares represent a cube that is product term with two variables
  - Four "adjacent" terms represent a cube that is product term with one variable
  - Eight "adjacent" terms is the function of all ones (no variables) is a tautology f<sup>1</sup>=1.

## Example Functions

- $\checkmark$  By convention, we represent the minterms of F by a "1" in the map and leave the minterms of blank  $\overline{F}$
- ✓ Example:

F (x, y, z) = 
$$\sum_{m}$$
 (2, 3, 4, 5)  
F (x, y, z) =  $\overline{x}$  y + x  $\overline{y}$ 

- ✓ Example:
- $\checkmark$  F (x, y, z) =  $\sum_{m}$  (3, 4, 6, 7)
- $\checkmark$  F (x, y, z) = y z + x  $\overline{z}$
- Learn the locations of the 8 indices based on the variable order shown (x, most significant and z, least significant) on the map boundaries



- ✓ Reduced literal product terms for SOP standard forms correspond to cubes i.e. to rectangles on the K-maps containing cell counts that are powers of 2.
- ✓ Rectangles of 2 cells represent 2 adjacent minterms; of 4 cells represent 4 minterms that form a "pairwise adjacent" ring.

✓ Topological warps of 3-variable K-maps that show

all adjacencies:

Venn Diagram



Cylinder





✓ Example Shapes of 2-cell Rectangles:



✓ Read off the product terms for the rectangles shown

x'z' x'y' yz

✓ Example Shapes of 4-cell Rectangles:



✓ Read off the product terms for the rectangles shown

Z

Z

X



- ✓ K-Maps can be used to simplify Boolean functions by a systematic methods. Terms are selected to cover the "1s"in the map.
- ✓ Example: Simplify F (x, y, z) =  $\sum_{m}$  (1, 2, 3, 5, 7)



$$F(x, y, z) = Z + \overline{X}y$$

#### Three-Variable Map Simplification

✓ Use a K-map to find an optimum SOP equation for

$$F(x, y, z) = \sum_{m} (0, 1, 2, 4, 6, 7)$$

$$F = \overline{z} + \overline{x} \overline{y} + x y$$



# Four Variable Maps

✓ Map and location of minterms:

| wx             | /Z<br>yz=00 | yz=01 | yz=11 > | /<br>yz=10 |     |
|----------------|-------------|-------|---------|------------|-----|
| w×=00          | 0           | 1     | 3       | 2          |     |
| wx=01          | 4           | 5     | 7       | 6          | B × |
| w×=11          | 12          | 13    | 15      | 14         |     |
| <b>W</b> wx=10 | 8           | 9     | 11      | 10         |     |
|                |             | 7     | 7       |            | -   |

#### Four Variable Terms

- ✓ Four variable maps can have rectangles corresponding to:
  - A single 1 = 4 variables, (i.e. Minterm)
  - Two 1s = 3 variables,
  - Four 1s = 2 variables
  - Eight 1s = 1 variable,
  - Sixteen 1s = zero variables (i.e. Constant "1")

# Four-Variable Maps

#### ✓ Example Shapes of Rectangles:



## Four-Variable Maps

#### ✓ Example Shapes of Rectangles:



## Four-Variable Map Simplification



# Four-Variable Map Simplification



## Systematic Simplification

- ✓ A Prime Implicant is a cube i.e. a product term obtained by combining the maximum possible number of adjacent squares in the map into a rectangle with the number of squares a power of 2.
- ✓ A prime implicant is called an Essential Prime Implicant if it is the only prime implicant that covers (includes) one or more minterms.
- ✓ Prime Implicants and Essential Prime Implicants can be determined by inspection of a K-Map.
- ✓ A set of prime implicants "covers all minterms" if, for each minterm of the function, at least one prime implicant in the set of prime implicants includes the minterm.

# Example of Prime

#### ✓ Find ALL Prime Implicants



### Prime Implicant Practice

✓ Find all prime implicants for:



## Another Example

#### ✓ Find all prime implicants for:



 $\sum_{m} = AB + \overline{ACD} + \overline{ACD} + \overline{ABC} \sum_{c} = \sum_{m} + \overline{ABD} + BCD + BCD$  34